Check for
Updates

Smarter Contract Upgrades with
Orthogonal Persistence

Luc Blaser
luc.blaeser@dfinity.org
DFINITY Foundation
Switzerland

Ryan Vandersmith
ryan.vandersmith@dfinity.org
DFINITY Foundation
Switzerland

Abstract

Altering the smart contract deployed on a blockchain is typ-
ically a cumbersome task, necessitating a proxy design, sec-
ondary data storage, or the use of special APIs. This can be
substantially simplified if the programming language fea-
tures orthogonal persistence, automatically retaining the na-
tive program state across program version upgrades. For this
purpose, a customized compiler and runtime system needs
to arrange the data in a self-descriptive portable format, such
that new program versions can pick up the previous program
state, check their compatibility, and support implicit or ex-
plicit data evolutions. We have implemented such advanced
persistence support for the Motoko programming language
on the Internet Computer blockchain. This not only enables
simple and safe persistence, but also significantly reduces
the cost of upgrades and data accesses.

CCS Concepts: - Software and its engineering — Run-
time environments; « Information systems — Main
memory engines.

Keywords: Orthogonal Persistence; Smart Contract Upgrades;
Blockchain; WebAssembly

ACM Reference Format:

Luc Blaser, Claudio Russo, Gabor Greif, Ryan Vandersmith, and Ja-
son Ibrahim. 2024. Smarter Contract Upgrades with Orthogonal
Persistence. In Proceedings of the 16th ACM SIGPLAN International
Workshop on Virtual Machines and Intermediate Languages (VMIL
’24), October 20, 2024, Pasadena, CA, USA. ACM, New York, NY, USA,
11 pages. https://doi.org/10.1145/3689490.3690401

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).

VMIL 24, October 20, 2024, Pasadena, CA, USA

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1213-5/24/10
https://doi.org/10.1145/3689490.3690401

Claudio Russo
claudio.russo@dfinity.org
DFINITY Foundation
Switzerland

32

Gabor Greif
gabor.greif@dfinity.org
DFINITY Foundation
Switzerland

Jason Ibrahim
jason.ibrahim@dfinity.org
DFINITY Foundation
Switzerland

1 Introduction

Modern blockchains, like the Internet Computer [2, 11], es-
tablish a secure and distributed virtual machine for running
complex programs, such as smart contracts, decentralized ap-
plications, or other software solutions. Such blockchain pro-
grams can be implemented in a Turing-complete high-level
programming language, such as for example the blockchain-
tailored languages Solidity [10] and Motoko [18], or main-
stream languages like Rust, JavaScript, Python, and others.

Even when deployed on a blockchain, there typically comes
a time when a program needs to be changed, be it for fea-
ture extensions, improvements, or bug fixes. This requires
a mechanism to upgrade a program’s code, while retaining
its state, replacing an existing version by a new version that
implements the desired change. Unfortunately, such support
is typically lacking or poor, requiring programmers to ap-
ply "creative" alternative solutions or implementing cumber-
some storage management. On blockchains, like Ethereum
[10], programmers usually prepare proxies to enable up-
grades by changing the redirection target [17]. More ad-
vanced blockchains support a dedicated upgrade mechanism
[13]. However, the integration in the programming language
is still influenced by the traditional computer architecture,
where the program has a main memory that is lost on an
upgrade. As a consequence, the blockchain often exposes
extra secondary memory where any more long-term data
can be stored to survive program upgrades. This not only
complicates program logic, but also incurs safety and perfor-
mance disadvantages. We discuss these techniques in more
detail in Section 2.

In this work, we strive to radically simplify program up-
grades on a blockchain, by achieving high flexibility, per-
formance, and safety at the same time. The idea is that the
program state, implemented in the standard inbuilt concepts
of the language, such as object-orientation, is automatically
persisted on the blockchain, and is even retained across pro-
gram version changes. This property is known as orthogonal
persistence [3-8, 15, 16]: The program lives conceptually in-
definitely, its state is implicitly persisted without the explicit

https://orcid.org/0009-0003-6679-6371
https://orcid.org/0009-0005-5298-7526
https://orcid.org/0009-0001-3125-7066
https://orcid.org/0000-0001-5515-9279
https://orcid.org/0009-0000-5839-6296
https://doi.org/10.1145/3689490.3690401
https://doi.org/10.1145/3689490.3690401
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3689490.3690401&domain=pdf&date_stamp=2024-10-17

VMIL 24, October 20, 2024, Pasadena, CA, USA

use of a database or secondary storage. The programming
language provides the necessary support to evolve both the
program logic and the persisted data representation.

Of course, this cannot be achieved by a classical program-
ming language implementation but requires a dedicated com-
piler and runtime system, that, for example, avoids any static
allocation and places all data in a dynamic heap with suffi-
cient metadata. On a program upgrade, the new version can
then pick up the existing memory, check compatibility, per-
form or guide necessary data migration, and then continue
program execution with the new version.

We have implemented such orthogonal persistence for Mo-
toko [18], an expressive high-level programming language
that runs on top of the Internet Computer [2, 11]. It real-
izes a self-descriptive heap persisted on the blockchain in
a format that allows subsequent program versions to check
compatibility and resume operation if safe. The runtime
system supports automatic data migration for well-defined,
common change patterns, and beyond that, allows users to
explicitly program any kind of more complex migration.

Compared to other programming languages for the IC,
Motoko’s orthogonal persistence offers these benefits:

e Simplicity: Developers no longer need to write spe-
cific logic for cross-upgrade persistence; a single key-
word suffices to declare data for retention.

o Safety: The runtime system checks data compatibility
on an upgrade, with the possibility of explicit migra-
tion if necessary. There is no way to misinterpret or
corrupt the data persisted by a previous version.

e Performance: The upgrade does not modify the heap
but only checks compatibility based on a type table.
As a result, the upgrade is very fast, only depending
on the number of static types, and not on the number
of objects.

o Flexibility: Programmers are at liberty to select al-
most any types for their persistent data and are not
restricted to a small selection of persistent represen-
tations (e.g. a key-value store). Currently, the only
restriction is that the persisted types must not contain
implicit references to code (excluding e.g. function
types). Migration to any other structure is possible,
either implicitly, when allowed by subtyping or explic-
itly, by user-defined coercion.

In summary, we make the following contributions:

e The design of a compiler and runtime system with
efficient and safe orthogonal persistence running on a
blockchain.

o The open-source implementation of orthogonal persis-
tence for the programming language Motoko, running
on the Internet Computer.

e An experimental evaluation of the orthogonal persis-
tence in comparison to traditional upgrade techniques
on the Internet Computer.

Luc Blaser, Claudio Russo, Gabor Greif, Ryan Vandersmith, and Jason Ibrahim

33

Smart Contract

Implementation

Smart Contract B
Version 0

Proxy

Target: Version 1

Smart Contract

delegatecall Implementation

Version 1

Figure 1. Enabling Ethereum contract upgrades via a proxy

The remainder of this paper is organized as follows: Sec-
tion 2 provides background information about prevalent
upgrade techniques used on blockchains, as well as our im-
plementation target. Section 3 describes how our program-
ming language integrates orthogonal persistence. Section
4 explains the design and implementation of the compiler
and runtime system to support the persistence. Section 5
reports on experimental results of orthogonal persistence
in comparison to classical persistence techniques. Section 6
discusses related work. Section 7 finally concludes this paper.

2 Background

To provide sufficient background information for the sub-
sequent sections, we first discuss how program upgrades
are currently enabled on blockchains. We then provide more
details on our implementation platform.

2.1 Upgrade Techniques

Like in traditional software development, on a blockchain,
one occasionally needs to alter a program’s code. This is
enabled by an upgrade, replacing the previous program logic
by a new version while keeping the relevant state.

2.1.1 Call Redirection. Some blockchains like Ethereum
[10], forbid the alteration of a deployed smart contract. In-
stead, programmers need to prepare upgrades by a mecha-
nism of call redirection. A common pattern is to put a proxy
program in front of the actual contract that contains the
actual implementation [26], see Figure 1. Users are then
instructed to always refer to the proxy which eventually
redirects their calls to the actual smart contract. A program
update can now be realized by resetting the redirection ad-
dress in the proxy such that it points to the new smart con-
tract, implementing the new version. By using the Ethereum
virtual machine instruction delegatecall, the proxy can
execute the call in the target contract by impersonating the
caller. Data is usually stored in the proxy, imposing restric-
tions on the data evolution paths, e.g. changing the existing
persistent data structure is not possible.

Apparently, the proxy patterns and other similar redirec-
tion mechanisms do not only add development complexity
but also pose a security risk: For example, a program upgrade
only depends on a value stored in the proxy (or other routing

Smarter Contract Upgrades with Orthogonal Persistence

Primary Memory

Secondary Memory

Temporary

Implicit use

Blockchain
application

Persistent
across upgrades

Explicit use

Figure 2. A blockchain program operating on two memories

logic) that may be replaced without sufficient transparency
and control of all program users. Moreover, various design
aspects need to be considered to avoid breaking interface
changes and to retain flexibility for future changes [17].

2.1.2 Secondary Memory. Other blockchains [2, 28] offer
a dedicated mechanism for upgrading a program that is al-
ready deployed on the blockchain. The upgrade is an explicit
operation that follows defined authorization and if desired,
governance rules, e.g. that the user community can review
the change and vote on an upgrade to be either accepted or
rejected.

However, while the upgrade process is supported at the
blockchain level, its technical integration in the program-
ming language remains quite limited. When the program
uses the standard language features for managing state, such
as object-orientation, this state is lost on an upgrade. In-
stead, programmers need to explicitly preserve the state
across upgrades. This is typically done by storing the data
to a secondary memory, using specialized data structures, or
manually copying state on upgrades by special API hooks.
The underlying design is reminiscent of traditional computer
architecture. The blockchain usually exposes two types of
memories, see also Figure 2:

e Primary memory: The main memory for the actual
program state used by the program execution as its
language-native memory. In some blockchains, this
is not stored in the blockchain and discarded at the
end of a transaction [28]. In other blockchains, like
the IC, the state is persisted on blockchain but it is
nevertheless erased on an upgrade because classical
languages cannot interpret the memory image of a
previously compiled program version.

e Secondary memory: A secondary (also called stable
or global memory) that is explicitly managed by the
program or through some dedicated data structure APL
This memory is certainly persisted on the blockchain
and can be consulted after an upgrade. Inspired by
traditional computers, this memory can also be larger
than the main memory, even if both memories are
equally stored on the blockchain.

34

VMIL 24, October 20, 2024, Pasadena, CA, USA

Using secondary memory for persistence has several down-
sides:

e Extra code is required to store the state. If omitted, the
data is only transient and lost on an upgrade.

o The data needs to suit the available data structures for
secondary memory, e.g. a key-value store.

e The data needs to be expensively serialized and dese-
rialized to and from secondary storage.

e There is the risk of corrupting or misinterpreting the
secondary storage, e.g. when changing the data types
with a new program version.

o The secondary memory needs to be managed.

2.2 The Internet Computer

The Internet Computer (IC) [2, 11] is a powerful blockchain
that allows running large-scaled decentralized software. Pro-
grams are organized as software components, called canis-
ters, that realize the actor model [22] and use WebAssembly
(Wasm) [20] at the execution level. Each canister has sub-
stantial compute and storage resources. The IC supports
around 2 billion instructions per second per canister and
offers memory of around 400 gigabytes per canister. Opera-
tions are issued as transactions that have a hard instruction
limit and change the canister state atomically on success, or
roll back on failure.

Various programming languages can be used to imple-
ment canisters, such as mainstream languages like Rust and
TypeScript, among others, or Motoko, a specialized language
for the IC (explained in Section 2.3).

For historical reasons, and to support classical languages
without dedicated persistence across upgrades, the IC also
exposes two memories per canister:

e Main memory: The primary memory that preserves
the native program state between calls to the same can-
ister. Although this state is stored on the blockchain,
the state used to be discarded on an upgrade, because
none of the available languages could exploit it for per-
sistence. Moreover, until recently, the main memory
was limited to 4 GB because of an underlying 32-bit
address space imposed by the initial release of Wasm.
Stable memory: A secondary memory that is also
persisted on the blockchain and specifically serves to
save the state that needs to survive the upgrade. The
stable memory can be accessed by a low-level API
[14] or through a stable data structure library [19]. It
supports 400 GB in a 64-bit address space.

We recently adjusted this memory architecture to leverage
main memory for our envisioned orthogonal persistence
support, see Section 4.1.

2.3 Motoko

Motoko [18] is a relatively young programming language,
tailored to the IC runtime model, to ease development. It

VMIL 24, October 20, 2024, Pasadena, CA, USA

actor {

stable var entries = List.nil<Text>();

stable var times = List.map<Text, Time.Time>(entries, func e { 8 });
Text) {
entries := List.push(t, entries);

public func log(t :

times := List.push(Time.now(), times); // record times
I
public query func readlLast(count : Nat)

List.toArray(List.take(entries, count));

: async [Text] {

I
public query func readUntil(t@ :
let after = List.filter<Time.Time>(times, func t { t >= t@ });

Time.Time) : async [Text] {

List.toArray(List.take(entries, List.size(after)));

Figure 3. A sample logging actor, original version and high-
lighted upgrade.

offers imperative, functional, object-oriented, and asynchro-
nous programming concepts, while integrating IC-specific
concepts directly in the language, such as the actor model
and, being in the focus of this work, orthogonal persistence.
Motoko emphasizes static typing and manages memory with
a garbage collector [9]. It has a rich type system with the
usual set of numeric types, tuples, options, variants, mu-
table and immutable records and arrays, recursive types,
and polymorphic functions as well as actor-oriented futures,
actor functions and actor types. The type system supports
structural subtyping.

3 Programming Model

As a unique feature in the blockchain space, the Motoko
programming language incorporates orthogonal persistence
as a core concept: Programmers can simply use the standard
concepts of the language to manage program state of an
arbitrary structure, and this state is automatically persisted,
even across upgrades. There is no need for secondary storage,
special data structures, or other database-like abstractions.

To give a taste of the language, Figure 3 defines an ac-
tor that can be used to maintain a log of messages using
public operations log and readLast and some actor private
state. This is a list of messages, stored in stable (thus per-
sisted), variable entries. Its subsequent upgraded version
(highlighted inline) records additional time stamps, extends
the code for log to do so, and adds the public operation
readuntil to query the log by time. Upgrading the original
version preserves the current state of entries while default-
ing the times for existing entries to 0. The public interface
evolves to a subtype, continuing to satisfy existing clients
while offering new functionality to future clients. The re-
tained private state evolves to a (trivial) supertype.

3.1 Stable Variables

A Motoko program uses an actor as top-level component
abstraction, containing state and functionality. The variables

Luc Blaser, Claudio Russo, Gabor Greif, Ryan Vandersmith, and Jason Ibrahim

35

actor Graph {
type Node =
. Nat;

{ // object type
number
// mutable array of Node references
var edges: [Node];

I

stable var start: Node = ..;

flexible var temporary : Node = ..;

}

Figure 4. Example Motoko program with two actor vari-
ables referring to a graph structure. start is retained across
upgrades, while temporary is reinitialized on an upgrade.

declared inside the actor represent the state and can refer
to object structures of arbitrary shape. Therefore, the actor
variables serve as a root set for objects allocated in the heap.
Motoko is garbage-collected, i.e. objects that are not reach-
able by actor variables or other temporary references (e.g. in
the call stack) are automatically reclaimed with some delay.

Motoko distinguishes between two types of actor vari-
ables, see also Figure 4:

e Stable variables: Denoted by the keyword stable,
these variables are persistent across upgrades. This
means that all objects that are transitively reachable
from stable variables also survive the upgrade, assum-
ing that the new program version still wants to use this
state. Therefore, stable implies a deep persistence of
the referenced object structure, also supporting cycles
and sharing.

e Flexible variables: Denoted by the keyword flexible,
these variables are re-initialized on an upgrade. This
means that objects reachable from flexible variables
can be discarded on upgrade, if not otherwise reach-
able from stable variables. Flexible variables are useful
for transient information, e.g. a recent sales list that is
reset on upgrade.

Figure 5 depicts a possible heap structure for the example
program. All objects reachable from stable variables (black)
constitute stable objects that are persistent across upgrades.
All remaining objects reachable from flexible variables (gray)
denote transient objects which are temporarily available in
the same program version. All white objects are garbage and
can be reclaimed.

3.2 Stable Types

Not all values are suited for persistence across upgrades,
for example references to function values and future values
are difficult to preserve when the program implementation
changes. This is because both function values and future
values reference local code, unlike all other values. For this
purpose, Motoko mildly restricts the types that can be used
for stable variables to a well-defined subset of stable types,

Smarter Contract Upgrades with Orthogonal Persistence

Stable
objects

Stable
variable

Actor

Flexible
variable
Garbage

Transient
objects

Figure 5. Longevity of objects implied by transitive reacha-
bility from actor variables

the recursively defined set of all types excluding function
types, future types and constructed types containing them.
Actor types and actor functions, referencing remote objects
and messaging endpoints, are also stable. The stability of the
type of a stable variable is statically checked.

In contrast, flexible variables can be of any type, including
function types and futures.

3.3 Upgrades

The code of a Motoko program can be changed to a new
version that is deployed to the blockchain as a replacement
for a previous version of that program. During this upgrade
process, not only does the program logic need to be replaced
but also the existing data of the previous versions needs to
be migrated to the new version.

In Motoko, the policy for retaining data across program
versions is defined declaratively, using stable variable dec-
larations. If a stable variable is newly introduced in the up-
grade, its initial value is determined by evaluating its defin-
ing expression (the initializer). If both the previous version
and the next version declare a stable variable with the same
name, the value of that variable (including all its reachable
state) is retained across the upgrade, ignoring its initializer.
Otherwise, if a stable variable is present in the old but ab-
sent in the new version, its old value is dropped. The value
of a flexible variable is always obtained by evaluating its
initializer, ignoring any declaration of that variable (stable
or not) in the previous version. The conditional initialization
of a stable variable, depending on its presence in a previous
version (if any), caters for both upgrades as well as the initial
deployment of an actor (in which all stable initializers are
evaluated).

Figure 6 exemplifies the upgrade process from version 0
to 1. The stable variables b and ¢ with their reachable state
are preserved on upgrade. However, variable a is dropped,
and variable d is freshly initialized. Variables e and f are

36

VMIL 24, October 20, 2024, Pasadena, CA, USA

Version 0 Version 1

actor { actor {

stable var a = ...; stable var b = ...;
stable var b stable var ¢ = ...;
stable var d = ...;

flexible var f = ...;

stable var ¢ = .
flexible var e = ...;

} }

Figure 6. Upgrade example with different actor variable
declarations: Only b and c are saved across the upgrade.

not persisted across the upgrade, because they are declared
flexible in at least one of the versions.

Generally, the type of a stable variable cannot be arbitrarily
changed between program versions but can only evolve to a
supertype. This is necessary for the system to implement a
defined migration from the original type and representation
to the new version. Users have a choice between implicit or
explicit migration when evolving data on an upgrade.

3.4 Implicit Migration

Certain data can be automatically migrated to a new program
version. This is essentially the case when the type is identical
or there exists a defined migration path that is implemented
by the runtime system. In Motoko, the runtime system checks
that matching stable variables support an implicit migration
path, preventing misinterpretation or corruption of data.

The implicit migration path is determined by the lan-
guage’s permissive subtyping relation: A stable variable can
be reused in a next program version if its old type is a sub-
type of its new type. Subtyping ensures that the old value is
compatible with its new type. This allows one to, for example,
promote unsigned big integers to signed big integers, remove
fields from records or promote their types, add options to
variants or promote their types, and even generalize finite
types to recursive types. For type soundness, the types of mu-
table record fields and mutable arrays, that could be aliased,
can only change to structurally equivalent types. None of
the subtyping changes require a change in representation
and are trivial identities on the values, not coercions. For
higher flexibility, stable variables can be freely added and
their mutability be changed.

Other type changes to stable variables are rejected on an
upgrade and require an explicit migration.

3.5 Explicit Migration

There exist many data evolution scenarios that cannot be
addressed by implicit migration, and ultimately, only the
developers are capable of defining the migration path. For
this purpose, there exists an explicit migration approach
that allows changing the data representation of a persistent
program arbitrarily on an upgrade.

For explicit migrations, developers take a three-step ap-
proach:

VMIL 24, October 20, 2024, Pasadena, CA, USA

Old version:

actor {

stable var pairOfArrays : ([Int], [Text]) = ...;

}
c

. . °©

Intermediate version: %
Q

import Array "mo:base/Array"; ®

actor {

stable var pairOfArrays : ([Int], [Text]) = ...; // original layout

func migrate<A, B>((fst,snd) : ([A], [B])) : [(A, B)] {

Array.tabulate<(A, B)>(fst.size(), func i { (fst[i], snd[i]) })

i

// new layout

stable var arrayOfPairs : [(Int, Text)] = migrate(pairOfArrays);

) c
°
Q

i o

New version: o
()

actor {

stable var arrayOfPairs : [(Int, Text)] = []; // unused initializer

}

Figure 7. Complex data evolution with two upgrades

1. Declare a new stable variable with a new data repre-
sentation and a new variable name, retaining the old
stable variable.

2. Initialize the new variable from the old variable (and
other state) using custom Motoko logic.

3. Discard the old stable variable, once all data has been
migrated to the new variable.

Figure 7 illustrates a more complex migration with custom
logic, evolving a pair of arrays to an array of pairs: The
intermediate version defines the new stable variable (step
1) and the data migration logic (step 2). The final version
drops the old stable variable (step 3). The upgrade skips the
initializer of the retained stable variable arrayOfPairs.

4 Implementation

Implementing orthogonal persistence in an efficient and safe
manner requires a bespoke compiler and runtime system
design. In the following sections, we elaborate on the specific
design and implementation aspects.

4.1 Blockchain Prerequisites

To enable our compilation of orthogonal persistence, the
following IC extensions were needed:

e Retention of main memory across upgrades: We added
an option for canisters to retain the Wasm main mem-
ory on upgrades instead of discarding it. This option
is only used by Motoko which implements orthogonal
persistence.

e Passive data segments: In order to avoid static ad-
dresses in a program binary, we enabled passive data
segments, a feature of the Wasm standard, that allows
loading static data content at a dynamic address.

e 64-bit main memory: Originally, the IC only offered 32-
bit main memory. In light of increased scalability needs
and for supporting large persistent main memory, the

Luc Blaser, Claudio Russo, Gabor Greif, Ryan Vandersmith, and Jason Ibrahim

37

Partition 0 Partition 1

Runtime system
shadow call stack

4 MB
Runtime system
Wasm data segment
4.5MB
Persistent metadata Dynamic heap space
5MB

Dynamic heap space

Figure 8. Predefined memory layout

Wasm Memory64 feature [21] has been enabled on
the IC. With this, orthogonal persistence attains the
same scalability as the stable memory that was already
64-bit-based.

4.2 Memory Layout

In a co-design between the compiler and the runtime system,
Motoko’s main memory is arranged in a structure that is
invariant of the compiled program version, cf. Figure 8: The
lower 4 MB are reserved for a dedicated shadow call stack
of the Motoko runtime system. The next 512 KB serve as a
reserved space for the special Wasm data segment used by
the Motoko runtime system (see Section 4.8). In the range
between 4.5 MB and 5 MB, persistent metadata is stored.
The dynamic heap space begins at 5 MB. Motoko uses a
partitioned heap that serves for incremental compacting
garbage collection, see Section 4.5.

4.3 DPersistent Metadata

The persistent metadata describes all anchor information for
the program to resume after an upgrade. More specifically,
it comprises the following data:

o A stable heap version that allows evolving the persis-
tent memory layout in the future.

e The stable subset of the main actor, containing all sta-
ble variables declared in the main actor.

o A descriptor of the stable static types to check memory
compatibility on upgrades.

e The runtime state of the garbage collector, including
the dynamic heap metadata and memory statistics.

e Diagnostic information, such as upgrade performance
metrics.

o A reserve for future metadata extensions.

Smarter Contract Upgrades with Orthogonal Persistence

4.4 Compatibility Check

Upgrades are only permitted if the new program version is
compatible with the old version, such that the runtime sys-
tem guarantees a compatible memory structure. This check
is performed both statically as a precondition of deployment,
and dynamically, as part of the upgrade transaction, in case
of racing deployments. For the dynamic check, the compiler
generates the type descriptor, a type table, that is recorded
in the persistent metadata. Upon an upgrade, the new type
descriptor is compared against the existing type descriptor:
failure of this dynamic subtype check causes the upgrade to
roll back.

4.5 Garbage Collection

To efficiently support orthogonal persistence, the Motoko
runtime system uses an incremental garbage collector (GC)
which relies on a partitioned heap with objects carrying a
forwarding pointer [9].

The incremental GC is particularly suited because it is
designed to scale to large heaps and the stable heap design
also aims to increase scalability.

The garbage collection state needs to be persisted and re-
tained across upgrades. This is because the GC may not yet
be completed at the time of an upgrade, with object forward-
ing still in play. The heap partition metadata is organized
as a dynamic list of partition tables, to potentially cover the
entire address space.

The garbage collector uses two kinds of root sets:

o Persistent roots: These refer to root objects that need
to survive program upgrades.

o Transient roots: These cover additional roots that
are only valid in a specific version of a program and
are discarded on an upgrade.

The persistent roots are registered in the persistent meta-
data and comprise:

e All stable variables of the main actor, to be stored
during an upgrade.
e The stable type table (cf. Section 4.4).

The transient roots are referenced by the Wasm data seg-
ments and comprise:

o All global variables of the current version, including
flexible variables.

e Any continuations awaiting inter-actor calls.

e The constant object pool (cf. Section 4.7).

4.6 Main Actor

On an upgrade, the main actor can be recreated with the
existing stable variables being recovered from the persistent
roots. The remaining actor variables, the flexible fields as
well as new stable variables, need to be (re)initialized.

As a result, the GC can collect unreachable flexible objects
of previous canister versions. Unused stable variables of

38

VMIL 24, October 20, 2024, Pasadena, CA, USA

former versions can also be reclaimed by the GC, as well as
the contents of stable fields that have been promoted to the
top type Any. The latter is safe because the language does
not support dynamic casts.

4.7 No Static Allocations

Any optimization based on static allocation, such as a static
heap, needs to be abandoned. Even statically-known, con-
stant objects have to be allocated in the dynamic heap. This is
because these objects may also need to survive upgrades and
the persistent main memory cannot accommodate a growing
static heap of a new program version in front of the exist-
ing dynamic heap. The incremental GC can no longer skip
these objects but must examine them and resolve forwarding
pointers as for dynamically allocated objects.

For memory and runtime efficiency, object pooling is im-
plemented for compile-time-known constant objects (with
side-effect-free initialization). These objects are eagerly cre-
ated on program initialization/upgrade in the dynamic heap.
Any reference to a constant object is looked up whenever its
value is needed at runtime. This is done by using a statically
known index into a table of references. This table forms part
of the transient GC root set.

The runtime system avoids any global Wasm variables for
state that needs to be preserved on upgrades. Instead, this
runtime state is stored in the persistent metadata.

4.8 Data Segments

Only passive Wasm data segments are used by the Motoko
compiler and runtime system. In contrast to ordinary active
data segments, passive segments can be explicitly loaded to
a dynamic address. This simplifies two aspects:

e The compiled Wasm code can contain arbitrarily large
data segments (to the maximum that is supported by
the IC). The segments can be loaded to the dynamic
heap when needed.

e The IC can simply retain the main memory on an up-
grade without needing to patch any active data seg-
ments of the new program version to the persistent
main memory.

However, more specific handling is required for the run-
time system of Motoko that is implemented in Rust: The
Rust compiler generates an active data segment. Our linker
changes this segment to the passive mode and loads it to the
predefined static address of 4 MB (cf. Section 4.2) during the
canister initialization and upgrades. The location and size
of the runtime system data segments is limited to a defined
reserve of 512 KB. This is acceptable because the runtime
system only requires a controlled small amount of memory
for its data segments, independent of the compiled Motoko
program. If there is a future need for larger runtime system

VMIL 24, October 20, 2024, Pasadena, CA, USA

static data than 512 KB, this can be supported by using ad-
ditional passive data segments that are placed at dynamic
heap addresses.

4.9 Migration Path of Last Resort

Anticipating that the persistent main memory layout may
need to be changed in the future, the runtime system ad-
ditionally supports a persistence mechanism of last resort,
namely by serialization and deserialization of the persistent
heap to and from stable memory in a new data format. This
format is self-describing and preserves all sharing from the
source heap, avoiding the serious limitations of the classical
serialization technique.

Arbitrarily large data can be serialized and deserialized
beyond the instruction limit of upgrades: Large data serial-
ization and deserialization is split in multiple transactions,
running before and/or after the actual blockchain program
upgrade to migrate large heaps. Of course, other transac-
tions will be blocked during this process and the necessary
upgrade authorization is required to initiate this process.
The algorithm is an adaptation of Cheney’s graph copying
algorithm [12], extended to accommodate a change in repre-
sentation and incremental execution.

This migration would only occur in rare cases. Using a de-
fined long-term serialization format allows flexible migration
compatibility across all compiler versions. This migration
path leaves us the option for radical changes in the future, e.g.
to introduce a new GC or rearrange the persistent metadata.

4.10 Classical Implementation

Previous versions of Motoko already implemented orthogo-
nal persistence but in a significantly less efficient and robust
way. On upgrade, the runtime would first serialize then de-
serialize the stable roots between main and stable memory.
With this approach, developers experienced severe scalabil-
ity and performance issues, since the serialization / dese-
rialization process is very expensive, often exceeding the
instruction limit of the blockchain transaction, ultimately
preventing upgrades. Another limiting factor was that the
serialization format duplicated shared immutable objects,
leading to potential size explosion during serialization. The
serialization algorithm was type-directed and recursive, thus
prone to data dependent stack overflows, and difficult to
scale to larger heaps. With this classic implementation, the
applicability of orthogonal persistence was limited to low
volumes of data and data of moderate complexity. Removing
those limitations was the primary motivation for the new
enhanced support of orthogonal persistence.

When migrating from the old serialization-based stabiliza-
tion to the new persistent heap, the old data is deserialized
one last time with the old format from the stable memory
and then placed in the new persistent heap layout. Once
operating on the persistent heap, the system should prevent
downgrade attempts to the old serialization mechanism.

Luc Blaser, Claudio Russo, Gabor Greif, Ryan Vandersmith, and Jason Ibrahim

39

5 Experimental Results

We evaluate Motoko’s orthogonal persistence on the Internet
Computer in terms of code complexity, program upgrade
costs, and general data access performance. For this purpose,
the orthogonal persistence is compared against the classical
approaches of persistence, namely serializing main memory
data to stable memory on an upgrade and using stable data
structures that directly access stable memory.

5.1 Benchmark

We assembled a series of application cases for evaluation in
three settings:

e Orthogonal persistence: The programs are imple-
mented in Motoko by using the programming model
and runtime support presented in this paper.

e Stabilization on upgrade: The identical Motoko pro-
grams are run with a classical mechanism of serializing
the relevant data from main memory to stable memory
before an upgrade and deserializing the data back to
main memory after the upgrade (Section 4.10).

o Stable data structures: The programs are analogously
implemented in Rust and use stable data structures that
directly tunnel accesses to the stable memory.

Table 1 summarizes the application cases in our bench-
marks and how the data is mapped in the corresponding
programming languages. For repeatable measurements, we
always use seeded pseudo-randomization with the same logic
in Motoko and Rust .

We took care to implement the scenarios as optimal as
possible in the corresponding languages: The set of stable
data structures in Rust is limited to stable vectors (for lists)
and stable B-trees (for maps), while in Motoko, we can use a
broader set of data structures in main memory (e.g. an array
list, a linked list, or a red-black tree).

5.2 Code Complexity

Naturally, persisting data in stable data structures involves
extra programming effort, as needed for the Rust version
of our benchmark cases. On the other hand, Motoko only
requires the stable keyword for the actor fields to enable
orthogonal persistence. Figure 9 gives an example of per-
sistence artifacts needed for the Auction benchmark. On
average, for our benchmark, we counted 17 SLOC for persis-
tence support in Rust and one keyword in Motoko.

5.3 Upgrade Costs

On the Internet Computer, the runtime costs of an appli-
cation is determined by the number of executed Wasm in-
structions, by applying a weight per instruction. Our main
motivation for the runtime system design was to allow scal-
able upgrades that are not depending on the heap size, but

ISee https://github.com/luc-blaeser/persistence-comparison for the bench-
mark implementation.

https://github.com/luc-blaeser/persistence-comparison

Smarter Contract Upgrades with Orthogonal Persistence

VMIL 24, October 20, 2024, Pasadena, CA, USA

Table 1. Benchmark cases, implemented in Motoko and analogously in Rust

Benchmark | Description Motoko Design Rust Design
List List of numbers Using an array list in main memory Using the stable vector data structure
Map A key-value store of numbers with random | Using a red-black tree in main memory Using the stable B-tree data structure
keys
Queue A FIFO queue of numbers Using a linked list in main memory Inserting entries with an increasing index to
a stable B-tree and storing the first and last
index.
Graph Random graph with directed edges Plain objects, each node with a linked list | Storing nodes in a stable B-tree by using a
referring to adjacent nodes. node index as key, each node storing the in-
dices of its adjacent nodes.
Auction An auction platform A red-black tree of auctions containing a | Stable B-tree of auctions with composed bid
linked list of bids. list

Rust (persistence via stable data structure)

type Memory = VirtualMemory<DefaultMemoryImpl>;
#[derive(CandidType, Deserialize, Clone)]
struct Auction {
item: Item,
bid_history: Vec<Bid>,
remaining_time: u64,
}
impl Storable for Auction {
fn to_bytes(&self) -> std::borrow::Cow<[u8]> {
Cow: :0wned(Encode! (self).unwrap())
}
fn from_bytes(bytes: std::borrow::Cow<[u8]>) -> Self {
Decode! (bytes.as_ref(), Self).unwrap()
}

const BOUND: Bound = Bound::Unbounded;

}
thread_local! {
static MEMORY_MANAGER: RefCell<MemoryManager<DefaultMemoryImpl>> =
RefCell: :new(MemoryManager: :init(DefaultMemoryImpl: :default()));
static STABLE_AUCTIONS: RefCell<StableBTreeMap<AuctionId, Auction, Memory>> =
RefCell: :new(
StableBTreeMap: :init(
MEMORY_MANAGER.with(|m| m.borrow().get(MemoryId: :new(®))),
)

Motoko (orthogonal persistence)

actor { ...
type Auction = {
item : Item;
bidHistory :
remainingTime :

LinkedList.LinkedList<Bid>;
Nat;

stable let auctions = Tree.new<AuctionId, Auction>();

Figure 9. Highlighting the source code for persistence han-
dling in the Auction benchmark.

only on the number and complexity of types. We verified
this by measuring the number of executed instructions per
upgrade for the different benchmark cases by comparing the
orthogonal persistence of this paper with the stabilization
on upgrade (Section 4.10).

Figure 10 shows the upgrade costs at the example of the
auction benchmark with increasing number of objects (and
correspondingly, the heap size). As expected, the upgrade
costs of the new orthogonal persistence is constant and very
low with a few 10 thousand instructions: Only the type-based
compatibility check is performed on the upgrade. Conversely,
the stabilization costs linearly increase with the amount of

40

Upgrade Costs

== Orthogonal Persistence == Stabilization on Upgrade

1.25E+11
1.00E+11

7.50E+10

Instructions

5.00E+10

2.50E+10

35502

10000000 20000000 30000000 40000000

Objects

Figure 10. Comparing upgrade costs

Table 2. Benchmark scales for access cost analysis

Benchmark | Size

List 10 million entries

Map 100,000 entries

Queue 1 million entries

Graph 100,000 nodes with 1 to 5 random edges each
Auction 100,000 auctions with 2 bids each

objects up to more than 100 billion instructions. On the IC,
the maximum number of instructions per upgrade is limited
to 200 billion. An upgrade that exceeds the limit will fail and
be rolled back, leaving the program in an evolutionary dead
end, unable to upgrade.

For the Rust stable data structures, the upgrade cost is
also constant and even 10 times lower than with our orthog-
onal persistence runtime system. This is only because Rust
performs no compatibility check on upgrade and is unsafe.

5.4 Data Access Costs

Using stable data structures imposes higher runtime costs be-
cause of the accesses that are tunneled to stable memory, also
involving serialization and deserialization. To measure the
difference, we run the benchmark cases with the application
sizes defined in Table 2.

VMIL 24, October 20, 2024, Pasadena, CA, USA

Element Lookup Costs

@ Motoko: Orthogonal Persistence [l Rust: Stable Data Structures 344626

163610 145458

Queue Graph

75842
100000

50000

11537

Auction

11317

1317,

List Map

10000
5000

Executed instructions

1000

Element Insertion Costs

@ Motoko: Orthogonal Persistence [l Rust: Stable Datg@gﬂgtures

4307|

Graph

396536

794|

Auction

500000
162900

641 I

Queue

119875

100000

50000

13288]

10000
5000

Executed instructions

1000

622 LAY

List Map

Figure 11. Comparing access costs

Figure 11 compares the average runtime costs for an ele-
ment lookup and insertion on a logarithmic scale. The costs
are again quantified as executed weighted Wasm instruc-
tions on the IC. While Motoko can operate directly on main
memory, the Rust code must operate indirectly, on stable
memory.

As can be seen, the performance costs are orders of magni-
tudes higher in Rust. This arises for various reasons: (1) The
choice of stable data structures is limited, e.g. only a B-tree is
available as a map data structure, while Motoko can flexibly
choose any data structure that fits the application case best.
(2) Serialization and deserialization is involved with each
insertion and lookup. (3) Some extra mapping complexity
arises with stable memory, e.g. no direct navigation via point-
ers is possible. Instead, objects need to be looked up via an
explicit index in a map.

6 Related Work

Orthogonal persistence has been originally proposed in [3, 5]
and has been implemented for Java [6, 7] and other program-
ming languages [4, 8, 24, 25], and also for operating systems
[15]. Unfortunately, the concept did not achieve broad adop-
tion in practice. One often mentioned concern is that pro-
gram structures are bound to the program binary and data
evolution is challenging: However, if the runtime system
for orthogonal persistence features a powerful enough data

Luc Blaser, Claudio Russo, Gabor Greif, Ryan Vandersmith, and Jason Ibrahim

41

evolution facility, data can be flexibly and safely migrated to
a new program version [7, 8], similar to database tooling.

Related to orthogonal persistence, dynamic software up-
dating [1, 23, 27] (DSU) implements mechanisms for altering
a running program. Assuming DSU is supported on top of a
persistent memory;, it can realize the same properties as our
implementation: A dynamic update would need to guarantee
safety and support a combination of synthesized and manual
state transformers (for implicit and explicit migrations). The
point between blockchain transactions can be viewed as the
safe point for a dynamic software update. Like DSU, our fast
upgrades offer high availability, but without the flexibility
(and complexity) of fine-grained binary patching.

Currently, for most programming languages used on a
blockchain, program upgrades remain a cumbersome and
fragile process. Ethereum necessitates a redirection architec-
ture with multiple smart contracts [17, 26] to deploy program
changes. A common pattern is to store the data inside the
proxy, limiting data migration possibilities quite consider-
ably. Other blockchains require extra programming effort by
way of a specific API [14, 28] or library [19] to preserve any
long-term state across upgrades.

7 Conclusion

Program upgrades are a dominant software engineering as-
pect when developing smart contracts or other blockchain
applications, involving substantial complexity, overheads,
and error-proneness. Programmers typically have to pre-
pare upgrades by complicated redirection architectures, or
by explicitly storing program data to a secondary memory
or in special data structures. We overcome this complexity
by featuring orthogonal persistence as part of Motoko, a
programming language that is specifically designed for the
Internet Computer blockchain: Developers can conveniently
program any data structures of first-order types in the stan-
dard Motoko language concepts, without needing to use any
API or library. The runtime system automatically persists the
necessary objects and guides safe, fast, and flexible program
upgrades, while supporting both implicit and explicit data
migration paths.

Availability

The Motoko programming language is open source and avail-
able at https://github.com/dfinity/motoko.

Acknowledgment

Andreas Rossberg is the main designer of the Motoko lan-
guage. He deserves credit for this well thought out and ele-
gant language. Various people provided valuable feedback
and support in realizing this work: Ulan Degenbaev, Dim-
itris Sarlis, Alexandru Uta, Yan Chen, Islam El-Ashi, Martin
Rasyzk, Bjorn Tackmann, Samuel Burri, Jan Camenisch, and
Dominic Williams. We owe our gratitude to all of them.

https://github.com/dfinity/motoko

Smarter Contract Upgrades with Orthogonal Persistence

References

(1]

—
=}
-

[10

[t

(11]

[12

—

(13]

Babiker Hussien Ahmed, Sai Peck Lee, Moon Ting Su, and Abubakar
Zakari. 2020. Dynamic software updating: a systematic mapping study.
IET Software 14, 5 (2020), 468-481.

Maksym Arutyunyan, Andriy Berestovskyy, Adam Bratschi-Kaye,
Ulan Degenbaev, Manu Drijvers, Islam El-Ashi, Stefan Kaestle, Roman
Kashitsyn, Maciej Kot, Yvonne-Anne Pignolet, Rostislav Rumenov,
Dimitris Sarlis, Alin Sinpalean, Alexandru Uta, Bogdan Warinschi,
and Alexandra Zapuc. 2023. Decentralized and Stateful Serverless
Computing on the Internet Computer Blockchain. In Proceedings of
the 2023 USENIX Annual Technical Conference (Boston, MA, USA) (ATC
23).

MP Atkinson. 1978. Database systems and programming languages.
In Proceedings of 4th VLDB Conference. 408-419.

Malcolm Atkinson, Ken Chisholm, and Paul Cockshott. 1982. PS-algol:
an algol with a persistent heap. SIGPLAN Not. 17, 7 (jul 1982), 24-31.
https://doi.org/10.1145/988376.988378

Malcolm Atkinson and Ronald Morrison. 1995. Orthogonally persistent
object systems. The VLDB Journal 4, 3 (jul 1995), 319-402.

M. P. Atkinson, L. Daynés, M. J. Jordan, T. Printezis, and S. Spence.
1996. An orthogonally persistent Java. SIGMOD Rec. 25, 4 (dec 1996),
68-75. https://doi.org/10.1145/245882.245905

Malcolm P. Atkinson and Mick J. Jordan. 2000. A review of the rationale
and architectures of PJama - a durable, flexible, evolvable and scalable
orthogonally persistent programming platform. In SMLI TR. https:
//labs.oracle.com/pls/apex/f?p=94065:10:11580106517824:1780

Luc Blaser. 2007. Persistent Oberon: A Programming Language with In-
tegrated Persistence. In Asian Symposium on Programming Languages
and Systems. Springer, 71-85.

Luc Bléser, Claudio Russo, Ulan Degenbaev, Omer S. Agacan, Gabor
Greif, and Jason Ibrahim. 2023. Collecting Garbage on the Blockchain.
In Proceedings of the 15th ACM SIGPLAN International Workshop on
Virtual Machines and Intermediate Languages (Cascais, Portugal) (VMIL
2023). Association for Computing Machinery, New York, NY, USA,
50-60. https://doi.org/10.1145/3623507.3627672

Vitalik Buterin. 2024. Ethereum Whitepaper. https://ethereum.org/en/
whitepaper

Jan Camenisch, Manu Drijvers, Timo Hanke, Yvonne-Anne Pigno-
let, Victor Shoup, and Dominic Williams. 2022. Internet Computer
Consensus. In Proceedings of the 2022 ACM Symposium on Princi-
ples of Distributed Computing (Salerno, Italy) (PODC’22). Associa-
tion for Computing Machinery, New York, NY, USA, 81-91. https:
//doi.org/10.1145/3519270.3538430

C. J. Cheney. 1970. A nonrecursive list compacting algorithm. Com-
mun. ACM 13, 11 (nov 1970), 677-678. https://doi.org/10.1145/362790.
362798

The Internet Computer. 2024. The Internet Computer Inter-
face Specification. IC Management Canister: Code Upgrade.
https://internetcomputer.org/docs/current/references/ic-interface-

42

[14]

[15]

[16]

[17]
(18]
[19]
[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

VMIL 24, October 20, 2024, Pasadena, CA, USA

spec#ic-management-canister-code-upgrade

The Internet Computer. 2024. The Internet Computer Interface Speci-
fication. Stable Memory. https://internetcomputer.org/docs/current/
references/ic-interface-spec#system-api-stable-memory

Alan Dearle, Rex Di Bona, James Farrow, Frans Henskens, Anders
Lindstrom, John Rosenberg, Francis Vaughan, et al. 1994. Grasshopper:
An orthogonally persistent operating system. Computing Systems 7, 3
(1994), 289-312.

Alan Dearle, Graham N. C. Kirby, and Ron Morrison. 2010. Orthogonal
Persistence Revisited. In Object Databases, Moira C. Norrie and Michael
Grossniklaus (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,
1-22.

Ethereum. 2024. Upgrading Smart Contracts. https://ethereum.org/en/

developers/docs/smart-contracts/upgrading
DFINITY Foundation. 2024. The Motoko Programming Language. https:

//github.com/dfinity/motoko

DFINITY Foundation. 2024. Stable Data Structures for Rust.
//github.com/dfinity/stable-structures

WebAssembly Community Group. 2022. WebAssembly Specification,
Version 2.0. https://webassembly.org/

WebAssembly Community Group. 2024. WebAssembly. Memory64
Proposal. https://github.com/WebAssembly/memory64/blob/master/
proposals/memory64/Overview.md

Carl Hewitt, Peter Bishop, and Richard Steiger. 1973. A universal
modular ACTOR formalism for artificial intelligence. In Proceedings of
the 3rd International Joint Conference on Artificial Intelligence (Stanford,
USA) (IJCAI'73). Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 235-245.

Michael Hicks and Scott Nettles. 2005. Dynamic software updating.
ACM Trans. Program. Lang. Syst. 27, 6 (nov 2005), 1049-1096. https:
//doi.org/10.1145/1108970.1108971

Ted Kaehler and Glenn Krasner. 1983. LOOM—large object-oriented
memory for Smalltalk-80 systems. Smalltalk-80: Bits of History, Words
of Advice (1983), 251-270.

David C.J. Matthews. 1987. A persistent storage system for Poly and
ML. Technical Report UCAM-CL-TR-102. University of Cambridge,
Computer Laboratory. https://doi.org/10.48456/tr-102
OpenZeppelin. 2024. Upgrading Smart Contracts.
openzeppelin.com/learn/upgrading-smart-contracts
Habib Seifzadeh, Hassan Abolhassani, and Mohsen Sadighi Moshke-
nani. 2013. A survey of dynamic software updating. Journal of Software:
Evolution and Process 25, 5 (2013), 535-568.

Adam Welc and Sam Blackshear. 2023. Sui Move: Modern Blockchain
Programming with Objects. In Companion Proceedings of the 2023
ACM SIGPLAN International Conference on Systems, Programming,
Languages, and Applications: Software for Humanity (Cascais, Portugal)
(SPLASH 2023). Association for Computing Machinery, New York, NY,
USA, 53-55. https://doi.org/10.1145/3618305.3623605

https:

https://docs.

Received 2024-07-11; accepted 2024-08-21

https://doi.org/10.1145/988376.988378
https://doi.org/10.1145/245882.245905
https://labs.oracle.com/pls/apex/f?p=94065:10:11580106517824:1780
https://labs.oracle.com/pls/apex/f?p=94065:10:11580106517824:1780
https://doi.org/10.1145/3623507.3627672
https://ethereum.org/en/whitepaper
https://ethereum.org/en/whitepaper
https://doi.org/10.1145/3519270.3538430
https://doi.org/10.1145/3519270.3538430
https://doi.org/10.1145/362790.362798
https://doi.org/10.1145/362790.362798
https://internetcomputer.org/docs/current/references/ic-interface-spec#ic-management-canister-code-upgrade
https://internetcomputer.org/docs/current/references/ic-interface-spec#ic-management-canister-code-upgrade
https://internetcomputer.org/docs/current/references/ic-interface-spec#system-api-stable-memory
https://internetcomputer.org/docs/current/references/ic-interface-spec#system-api-stable-memory
https://ethereum.org/en/developers/docs/smart-contracts/upgrading
https://ethereum.org/en/developers/docs/smart-contracts/upgrading
https://github.com/dfinity/motoko
https://github.com/dfinity/motoko
https://github.com/dfinity/stable-structures
https://github.com/dfinity/stable-structures
https://webassembly.org/
https://github.com/WebAssembly/memory64/blob/master/proposals/memory64/Overview.md
https://github.com/WebAssembly/memory64/blob/master/proposals/memory64/Overview.md
https://doi.org/10.1145/1108970.1108971
https://doi.org/10.1145/1108970.1108971
https://doi.org/10.48456/tr-102
https://docs.openzeppelin.com/learn/upgrading-smart-contracts
https://docs.openzeppelin.com/learn/upgrading-smart-contracts
https://doi.org/10.1145/3618305.3623605

	Abstract
	1 Introduction
	2 Background
	2.1 Upgrade Techniques
	2.2 The Internet Computer
	2.3 Motoko

	3 Programming Model
	3.1 Stable Variables
	3.2 Stable Types
	3.3 Upgrades
	3.4 Implicit Migration
	3.5 Explicit Migration

	4 Implementation
	4.1 Blockchain Prerequisites
	4.2 Memory Layout
	4.3 Persistent Metadata
	4.4 Compatibility Check
	4.5 Garbage Collection
	4.6 Main Actor
	4.7 No Static Allocations
	4.8 Data Segments
	4.9 Migration Path of Last Resort
	4.10 Classical Implementation

	5 Experimental Results
	5.1 Benchmark
	5.2 Code Complexity
	5.3 Upgrade Costs
	5.4 Data Access Costs

	6 Related Work
	7 Conclusion
	References

